NONSTEADY RADIAL EXPANSION OF A GAS
INTO A FLOODED SPACE FROM A SUDDENLY
TURNED ON STEADY SOURCE

S. F. Chekmarev UDC 533.6.011

The problem of the radial expansion of a gas into a medium of low pressure from a suddenly
turned on steady source with M=1 is examined in the report. The examination concerns
mainly the unsteady flow of gas in the initial stage of expansion. The laws of motion of the
surface of a powerful explosion, which determine the structure of the region of flow, are
established for the initial stage of expansion with the help of a simple approximate solution
of the problem. A method is proposed and a numerical solution of the problem is obtained
for a viscous thermally conducting gas in a general formulation.

The steady supersonic flows of a heated gas in nozzles and in free jets beyond underexpanded nozzles
are widely used in laboratory practice for performing physical and aerodynamic studies. In this case the
heating of the gas in the forechamber of the gasdynamic source is often accomplished with a pulsed electric
discharge or shock compression of the gas [1, 2]. In these cases the discharge of the gas from the fore-
chambey into the expanding part of the nozzle or into free space begins as a result of the sharp increase
in pressure in the forechamber. A steady mode of flow is rapidly established in the critical cross section
of the nozzle and the further development of the gas flow in the expanding part of the nozzle or in free space
now takes place in the presence of a steady source of gas in the critical cross section of the nozzle with the
parameters p_, T , and u, corresponding to the parameters p; and T of the stagnant gas in the forecham-
ber. If py and T remain constant for a long enough time then the corresponding steady flow is established
in the nozzle or in the jet. In an actual case [1, 2] the time within which p, and T can be taken as constant
is small. Therefore it is important to know how the steady flow is formed, especially in the central region
of the stream usually used for performing studies.

The flow of gas in the central region of jets escaping from an axially symmetric or flat nozzle with
a strongly underexpanded stream, as well as the flow in axially symmetric or flat nozzles with a rectangular
contour (with the condition of neglecting friction at the nozzle walls), is close to radial flow (with spherical
or cylindrical symmetry, respectively) [1-3]. The idealization of the original problem leads to the problem
of the radial (nonsteady) expansion of a gas from a suddenly turned on steady source.

The problem was solved in [1] for the caée of expansion of a gas into a vacuum (in application to flow
in nozzles). The asymptotic form of flow as t—« for the expansion of a gas into a flooded space was studied
in [3] (in application to jet flows). In [1, 3] the analysis was conducted in the framework of the theory of an
ideal fluid.

1. Statement of the Problem

Let a spherical or cylindrical surface of radius r; = 0 be defined in an infinite volume of a quiescent
gas with known parameters of state (pPw, To). It is required to determine the development of the flow of
the gas in the region (ry, «) with the course of time if at some moment t=t; the parameters of the gas at
the surface r=r; suddenly acquire the fixed values p; > p,, Ty, 4y =0 (M; = 1) which do not vary with time.
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2. General Pattern of Flow.

Let us follow the process of development of the flow during the
radial expansion of a gas (ideal fluid) into a flooded space from a sud-
denly turned on steady source with M; =1. In this case we will partly
use the results of [1, 3]. The qualitative pattern of flow is analogous
for y=1 and p=2.

The paths of motion of the surfaces of a powerful explosionwhich
determine the structure of the region of flow are shown in Fig. 1. The
contact surface separating the gas of the source and the surrounding
il — gas, the shock wave in the surrounding gas, and the shock wave in the
gas of the source are denoted by the letters i, e, and s, respectively.

Fig. 1
At the initial time t=t; the velocity of the motion of the contact
surface is V;=w;. The gas of the source acts on the surrounding gas
like an expanding cylindrical or spherical piston and, since according to the conditions of the problem u >0
is reached instantly, the compression wave in the surrounding gas at the moment t; will be centered. There-
fore it must be assumed that the compression of the surrounding gas from the very start of the discharge
will take place with the participation of a shock wave (e).

With an increase in r; the mass of the surrounding gas displaced by the "piston" and set into motion
by it and the reaction of the surrounding pressure increase, whereas the motive impulse supplied by the
source per unit time remains constant. Therefore the motion of the surface i slows down with time, which
in turn impedes the free expansion of the gas escaping from the source and leads to its accumulation in
front of the surface i and to compression. In the initial period of discharge the process of compression
will be isentropic, since at t=t; the velocity of the surface i is equal to the velocity of the gas "accumulat-
ing™ at it and the difference in velocities increases continuously with time. With time the wave of isen-
tropic compression changes into a shock wave, whose path of motion is shown by the solidcurve s; the dashed
section of the curve corresponds to the stage of isentropic compression. The flow of the gas in the region
(ry, rg) (under the solid curve) is not disturbed and takes place just as if the gas were escaping into a vac-
uum,

As t— o we have rj, rg—. As this bappens Vij—0 and the wave e degenerates into a weak distur-
bance. At the same time the pressure p,, of the surrounding gas becomes determining in the region (rg, rj)
as a result of which the shock wave s approaches a certain fixed position rg=rgg determined by the value
~11(Pot /oY [31.

Henceforth we will use the following terminology (see Fig. 1): I, initial stage of expansion (rg—rj<«
Ti; Ti—rg<<rj; rj<rgg); II, intermediste stage of expansion; III, final stage of expansion (f—c; ri—oo;
Te—x; rS_'rss)-

3. Principal Laws of Motion of the Surfaces of a Powerful

Explosion in the Initial Stage of Expansion of a Gas

into a Flooded Space

We shall confine ourselves to an examination, within the framework of the theory of an ideal fluid, of
the model problem of the expansion of a gas from a suddenly turned on steady source with My?>>1. We shall
take the conditions in the flooded space as typical for practice: p, << py; To <Tg. In the limiting case of
expansion of 2 gas into a vacuum the problem has a simple solution: the gas (in particular, its leading
front, i.e., the contact surface) moves with an almost constant velocity u = umax =~ uy, while the distributions
of p, p, and T in the region (ry, ri) are close to those for steady expansion [1].

Let us determine the motion of the contact surface, starting from the law of conservation of momen-
tum. Using considerations of the theory of a thin compresed layer {4, 5], we will assume that in the initial
stage of expansion the mass of gas concentrated in the compressed layer (rg, re) is moving on the average
with the velocity Vi=drj/dt. Since according to the conditions of the problem M1 >1 and the thickness of
the compressed layer is small, the effect of the pressure due to the widening of the stream tubes on the mo-
tion of the gas can be neglected. In addltlon one can also neglect the counterpressure p,,, since for small
enough T, (or, to be more precise, for cl <<V12) the retardation of the escaping gas will take place mainly
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r } ‘ ’ through the setting into motion of the displaced surrounding gas. With
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allowance for this the equation of conservation of momentum is written
g in the form

,

,

i . .

d ’ rondr; ) ! roey ey 3_]_

T (mg,s 4+ mie) Tl ~2vm | p'w'r'vdr | = 2vmpgusTy, (3-1)
: .
"

where the prime denotes a dimensional variable, while m'g j and m'y e
denote the mass of gas in the regions (rg, rj) and (rj, re), respectively.

1t is clear that m'y g is approximately equal to the mass of dis-
placed surrounding gas. In particular, for r'y>»r'

, 2y A (3.2)
nmj e = ’\7—! lnpmri +i.
T

We can use the equation of conservation of mass of the escaping gas to determine the value m'g ;.
3
When t'>>t'; we have approximately
r
my ; = 2vapaurst’ — 2va jl p'r’¥dr'. (3.3)

"
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TABLE 1

Experiment - Theory
w=0/7 | w=1/5 ®=5/3 ®=9/1; 7/5; 5/3
v=1 n; 0,68 0,711 0,65 0,67
n, 0,71 0,711 0,69
v n; - 0,54 0,52
0,5
n, — 0,66 0,63 ’

In the region (r;, rg) the flow of the gas takes place just as if the gas were expanding into a vacuum.
In particular, when M;?>1 we have u'=u'y and

'Y = pyry’
, (3.4)

which we can use for calculating the integrals entering into (3.1) and (3.3). Replacing, in addition, the upper
limits of integration in these integrals with the close value rj, after the substitution of (3.2) and (3.3) into
(3.1) and twofold integration we obtain the law of motion of the contact surface:

2

b=FrneTy o (3-5)

(ri— )2 =bry™ 4 Cyt + C,,

where r;=1';/r'y; t=t'u'y/r"; po =pl/p'y. When ri, t=0 (1) the estimate C;, C,= 0 (p.) follows from (3.5)
and the first-order differential equation for the constants of integration which corresponds to it. There-
fore, for ri, t>1 we finally have
A2
t=r;+=Vbr®. (3.6)
For r; «p /Y Eq. (3.6) gives rj=t, which corresponds to the solution for the expansion of a gas into a vac-
uam [1].

The effect of the flooded space begins to be felt when r; = O(b'i/”). Let us examine the solution ob-
tained when rj>b /¥, where »
ri:b"‘i/v —+2 zz/'v+2. (37)
Returning to dimensional variables in (3.7)

o

P 1 2
: [(v+1><v'+2> pmzrlv]‘vﬁ RE (3.8)
;= D) > [2

il
P

we see that the motion of the contact surface for each y=1, 2 is determined by only two values: pl, and
the impulse of the source per unit time I'y=27yp{u',’r";¥. When the pressure p(, is neglected the state of
the gas in the surrounding space is determined by the single nonzero dimensional value p&. There fore,
the very process of flow of the gas in the region (rj, =) is determined by only two dimensional values: I';
and p!,. Since their dimensionalities are independent, in the region (rj, =) there is a self-similar solution
of the problem which depends on p, %, and the single variable [6]

2

5 PN
A= ( ? )ﬂz (3.9)

In this case certain fixed values of A correspond to the surfaces of a powerful explosion.

This solution comes down to the well-known solution of the problem of the displacement of a gas by
an expanding cylindrical or spherical piston moving in accordance with the power law r'i=C"c'Il+1 of (3.8).
In particular, we have

A A
Te (t):x?ri(t); fza("””’v)v (3.10)
where n=--p/@+2). For w=1.4 the numerical values of ¢ =a (n, », v)are given in [71.

Equation (3.10) can alsolbe used to estimate the value of re(t) when ry= 0(b~t/), since the value of 4
depends weakly on the exponent n [which cannotbe said about the distribution itself of the parameters in the
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region (rj, Tg)l. For example, for n=1.4 with the maximum variation in n for (3.6) [from 0 to —v/{v +2)1
the value of ¢ for y=1 and y =2 varies within limits of 5% about some a,y=1.13 [7].

Let us find the approximate law of motion of the shock wave s. Assuming that p'= p'__(n+1)/(x—1)
in the region (rg, rj), from (3.3) with the help of (3.4) we obtain

v+i v+i
o Ty T
a1 - ===t —r),

where t=tu' /r'y; ro=r'q/r'y. Or since rj—r, «r;

)

P | (?‘i .

2

9% —
[

ti.

ry =

,_.
e’

(3.11)

—

For the expansion of a gas into 2 vacuum, when ri=t, (3.11) gives the correct result: rq(f) =r;(t).

Note that Egs. (3.6), (3.10), and (3.11), which determine the laws of motion of the surfaces i, e, and s
of a powerful explosion in the initial stage of expansion, allow one to change to the new variables
/q’ WY iy llor N "

T= {Lc,i } 1 == (l—dr:‘ "‘?‘; OL=51,E,5,
\ 01 ry

)
5]

e

in which the motion of these surfaces will be given by single equations for different pf/p's.

The results of the analysis conducted above allow one to explain certain regularities of the motion of
the surfaces of a powerful explosion during the discharge of shock-heated gas from a flat slot (analog: y=1)
and from a round opening (v =2) [2].

We should note the following in advance. The condition ri>>b™/¥ is equivalent to the condition that
the mass m'j o(~p, riV+1(t)) of displaced surrounding gas is much greater than the mass m'; o(~p'ju"yr'y¥t")
of gas coming through the source. This gives a physical explanation for the fact that the law of motion r';=
r'i(t) of the contact surface is determined here only by the values v, I'y, and pl.

It is reasonable to assume that in the case of the expansion of a gas from a source with M, =1, as oc-
curs in the experiments of [2], in the section of the initial stage of expansion where m'i,e»m'ui and r'y >»
r'; the motion of the contact surface will be determined first of all by the two-dimensional values: I'=
21)71'(piu-12 +p’1)r1'y and p!. Then the arguments which led to (3.9)-(3.10) above are valid here.

In [2] the laws of motion of the front of escaping gas (o¢v=1) and of the shock wave in the surrounding
gas (a=e) were determined experimentally and represented in the form of the functions x5 =CotP¥(x'=1r"),
An analysis of the experimental conditions shows that the condition m'j,e>m'y j is satisfied in almost the
entire initial stage of expansion. A comparison of the values of the exponent n , with the theoretical values
is given in Table 1.

Numerical values of g from (3.10) are known for w=1.4 [7]. Therefore the value of Xg/%i can be com-
pared with the theoretical value. For the discharge of Ny(x=1.4) from a slot, where ng=nj ~0.67, we have
Xe/%i=1.19 and rg/ri=1.16.

4. Numerical Method of Solving the Problem

for a Viscous Thermally Conducting Gas

The unsteady radial flow of a viscous, thermally conducting, compressible, ideal gas is described by
the following system of equations [8]:

o2 ou /—1{—%‘7,71’ = 5[5 ) — 2y 22 (.1)
.007 PL%_VT1<%;ll¥)=ﬁ{é—’—l\—%(rVLl;)—f

+f§(z—1)1\1%p[(3—:)2—v ;g;i+<;)2 l (4.2)
529*;1?;;(”9“#0; (4.3)
p=eT, (4.9)
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where all the values are normalized to the corresponding values at r'=r';; t=tn",/r'y; Re;=p"ju'yr'y/u'y;
M;=u'y/c';; the Prandtl number ¢ and the ratio of heat capacities w are assumed to be constant.

Stating from the general statement of the problem and keeping in mind the nature of the system of
equations (4.1)-(4.4), we can write the boundary conditions in the following form:

when t=1u=1, T=1, and p=1for r=1; u=0, T=Te, and p=pe for 1 < r=q;
when t>1 u=1, T=1, and p=1 for r=1; u=0, T=T, for r=c.

To find the values of u, T, and p in the region (1, =) when t>1 we propose to use Eqgs. (4.1)-(4.3), re-
spectively. By eliminating the pressure p from (4.1)-(4.2) with the help of (4.4) and noting the derivative
dp/ot which appears in (4.2) in this case with the help of the equation of continuity (4.3), we can write the
system of equations in the following linear form:

du a2 0

~a;’ + A, 0—yl;+ A, 0—; + A= Ay , (4.5)
or o7 ar

o+ B+ By g+ ByT = By; (4.6)
9 Oy

6—;’ + Cy —6‘; + C30 = Cy, (4.7)

where y=y(r) is a transformation which changes [1,%*] = rinto [0, 1] = y: A, By, and Ci are complexes re-
maining after the isolation of the linear section. If one considers that the terms containing the products
u(duBy) and T T/oy) were included in the groups A,(8u/dy) and B,(8T/3y), respectively, the notation (4.5)-
(4.7) uniquely determines the form of Ay, Bk, and Ck.

As the experiment of an earlier report [9] shows, to solve the problem with an acceptable accuracy
and a reasonable volume of calculations one must have a {inite-difference system with an accuracy no worse
than 0(h% with respect to space y. In the approximation of Egs. (3.7) and (3.8) by finite differences one can
use the implicit difference system of [9], which has an approximation accuracy 0(r +h?) and for the corre-
sponding linear equations is stable for any finite 'r/h2, where 7 and h are the steps in time and in space y,
respectively. In particular, for (4.5)

W —_— 1

. . . . . : 7
] + 4l == oAbt = Al 0(r -, (4.8)

j+t L i+l o 41 i+l i+l i+l
u; — 2y Ty .o

where i is the number of the partition with respect to y(0=i=<N); j is the number of the time layer (j=0).
The value of Al are calculated as follows: the values entering into Ay are calculated algebraically, as-
suming that their values are equal at the node (tj“, ¥;), while the derivatives with respect to y are ca lcu-
lated at the point i of the j-th layer using the central differences 0(h?).

Equation (4.6) is approximated in a similar way.

With an equation of the hyperbolic type of (4.7) the matfer becomes somewhat more complicated (we
assume that the C are known). The implicit difference system with the natural, in the given case right-
sided, approximation of the spatial derivative leads to a spatial accuracy of only 0(h) [10]. Therefore, we
proceed as follows. From the Taylor series expansion of p with respect to y in the vicinity of the point
(t3*1, y;) we have

op\ i+t _ PO a0\t kg ey
(@)i - h ay?), 2 :

j+1
Replacing (sz/ByZ)g with the corresponding value in the j-th layer, we obtain

.
—(;iy—‘;)i-zi - 0(v 4 hY).

T
((7_1/ - h

Thus, the difference system for (4.7) can be written in the form

pitt ol il piHt o ) s B
i SR . A % e (f,—;;)J S +0(v+hY, (4.9)
13

T
where (8%/ ayz)i= (p%+1—2p];+ PJ;_ 1) /h%, while the C%d are calculated analogously to the A{{i and B:{{i' It is

not hard to verify [10] that when Ck=const (i.e., for a linear equation) the sytem (4.9) is stable for any finite °
7/h.
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j+1
The values of uiJ for j=0 were determined by the trial run method [10] from the system of equa-

jt1 j+1 i+
tions u0]+ =1 and (4.8) for 1=i=N-—1 and ui] =0. The TiJ ! were calculated analogously. The values

. + .
ofpi3 ! were determined from (4.9) with the initial condition poJ '=1. The value of pNJ needed for this
when j=1 was determined by extrapolation from the pl;(N—3=i=N—1). In the calculations conducted the
pJN coincided with p%I= p ., With an accuracy of five significant figures.

The function y= (2 /m)arctan [(r—1)/1], where [ = O(rgg), we used for y=y(r) in the calculations. The
step h in space was taken as uniform while the value of the step 7 in time, in connection with the fact that
the time rate of development of the process varies quite considerably in the course of time, was taken from
the equation

vl mrigo A= max {(Olnu)j’ (o"lnT)J" (01..n"")j}-
i i

t<ian—t N 08 f) Gt
The process was considered as established when AJ = ¢. The values of 70, h, and £ were selected
experimentally in such a way that upon their fivefold variation the distribution of the parameters at simi-
lar times did not differ by more than 2-39.

5. Results of a Numerical Solution of the Problem

for a Viscous Thermally Conducting Gas

The distributions of the stream parameters for the expansion of a gas from a suddenly turned on cy-
lindrical source (y=1) with M; = M, =1 into a medium with p,,=0.12 and Teo= Ty, =1.2 are given in Fig. 2
as an example illustrating the development of the flow of a viscous thermally conducting gas. Herew =
7/5, 0=3/4, and p=T.

The distributions of the parameters corresponding to the time t;=1 are denoted by the number 0.
These distributions, which represent smoothed discontinuities, were given as the initial distributions inthe
calculations. The times t);=1+0.32 .2K are denoted by the numbers 1-13. The solid lines correspond to
Re_, =25 and the dashed lines to Re* =200.. The arrows with the indices s, i, and e show the conditional,
within the limits of 5-7%, positions of the corresponding surfaces of the powerful explosion for the time
tg=11.28 (here and afterward the term "surface" will be used in the case when discussing integral charac~
teristics of the shock waves or the contact zone: position, drop in parameters, ete.).

The overall pattern of the flow corresponds to that presented in Part 2. The shock wave e is formed
almost immediately after the beginning of the discharge of gas. For example, at the time t, the difference
in the value of T/pX~! "before" and "after" the wave is already 309, (for Re, =200). The process of com-
pression of the gas in front of the inner surface of the "piston" i continues to be isentropic for some time.
For example, for the same Re_ at the time t; the behavior of p and T in the region from r=1 to the point
with the maximum value of p still obeys the law T=p" ! with an accuracy of 5%. At the time tz the shock
wave s is already formed.

The flow of gas in the region (1, rg) takes place just as for expansion into a vacuum. Since p_, and
P. are rather large in the given case, however, the contact surface moves slower than the boundary of
steady flow during the expansion of a gas into a2 vacuum [1]. Therefore the flow of gas is steady in the re-
gion (1, ry). It has the properties inherent to the steady radial flow during the expansion of a gas into a vac-
uum [9]. We note that the effect of Re,. %, o, and the dependence u = u(T) are mainfested analogously for
vy=1and p=2.

The behavior of the stream parameters in the region (rj, re) in the initial stage of expansion [up to
t=0(ty)] correspond qualitatively to the behavior of the parameters in the problem on the piston [7].

As t—o we have ry, Ti— and rg—Trgg. In this case Ty3 — T, as a result of the degeneration of
the shock wave e into a weak disturbance. At the same time Tj- approaches the stagnation temperature
Ty4 of the escaping gas, in this case equal to T,,. Consequently, Ti+— Tj.. Since at the contact surface
U+ =uj- and pj+=Ppi- in addition, the drop in the parameters at if disappears as t— « and the flow changes
to a stationary mode.

It should be noted that a decrease in the overall compactness of the stream (a decrease in Re,), which
leads to a considerable change in the parameters in the entire region of flow, has a rather weak effect on
the instantaneous position of the shock waves and the contact surface.
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The qualitative pattern of flow for the case of the spherical (¢v=2) expansion of a viscous thermally
conducting gas into a flooded space with T, =T, « 18 fully analogous to that described above. The important
difference between the cases of y=1 and y=2 appears when T, = Ty «and involves mainly the final stage of
expansion. This question requires a special examination and will not be discussed in the present article.

A comparison of the dependences rj=rj(t) for the initial stage of expansion of a gas for »=1 found
through the approximate analysis of Part 3 [Eq. (3.6), curve 1] and from the results of a numerical calcula-
tion (curve 2) is given in Fig. 3. Here = 7/5; My=5; pb /p'y=0.123; T'x /T';=0.145. To obtain better
accuracy. in the approximate solution the value r'e=ar'j, which corresponds to m';j ¢ in physical meaning,

was inserted into (3.2) in place of r'; in accordance with (3.10). This led {o a new form of the value in (3.6):
v+1

b= "(‘v“%m')“pm; a=1.13.  The additional conditions for the numerical calculations are: ¢=38/4; y=T;

Re,; =400. The dependence rg=t which corresponds to expansion into a vacuum is shown by a dashed line

for clearness.

The approximate dependences rg{t) and rg(t) determined by Eqs. (3.6), (3.10) with 2=1.13, and (3.11)
agree with an accuracy of 5-10% with those resulting fron a numerical calculation.

The author thanks A. K. Rebrov for useful discussions.

NOTATION

r, radius; t, time; T, temperature; p, pressure; p, density; u, velocity of gas; w, ratio of heat capac-
ities; M, Mach number; x, distance along axis of jet from nozzle cut; Vg, translational velocity of surface
a; m, g, mass of gas included in the region (r,, rg); c, velocity of sound; u, dynamic viscosity.

INDICES

y=1, 2, cylindrical and spherical symmetry; ', dimensional value; — (+), left (right) side of surface
of powerful explosion; «, conditions in flooded space; 0, conditions of adiabatic stagnation; *, sonic sur-
face; 1, surface of source.
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