
NONSTEADY RADIAL EXPANSION OF A GAS 

INTO A FLOODED SPACE FROM A SUDDENLY 

TURNED ON STEADY SOURCE 
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The problem of the radial  expansion of a gas into a medium of low p r e s s u r e  f rom a suddenly 
turned on steady source  with M_> 1 is examined in the report .  The examination concerns 
mainly the unsteady flow of gas in the initial s tage of expansion. The laws of motion of the 
surface of a powerful explosion, which determine the s t ruc ture  of the region of flow, are  
established for  the initial stage of expansion with the help of a simple approximate solution 
of the problem. A method is proposed and a numer ica l  solution of the problem is obtained 
for a viscous thermal ly  conducting gas in a general  formulation. 

The steady supersonic flows of a heated gas in nozzles and in f ree  jets beyond underexpanded nozzles 
are  widely used in labora tory  pract ice  for per forming physical  and aerodynamic studies. In this case the 
heating of the gas in the forechamber  of the gasdynamic source  is often accomplished with a pulsed electr ic  
discharge or shock compress ion  of the gas [1, 2]. In these cases the d ischarge  of the gas f rom the fore-  
clmmber into the expanding par t  of the nozzle or into f ree  space begins as a resu l t  of the sharp increase  
in p r e s s u r e  in the forechamber .  A steady mode of flow is rapidly established in the c r i t ica l  c ross  section 
of the nozzle and the fur ther  development of the gas flow in the expanding par t  of the nozzle or in f ree  space 
now takes place in the presence  of a steady source  of gas in the cr i t ical  c ross  section of the nozzle with the 
pa ramete r s  p, ,  T . ,  and u,  corresponding to the p a r s m e t e r s  P0 and To of the stagnant gas in the fo recham-  
ber.  If P0 and T o remain  constant for  a long enough t ime then the corresponding steady flow is established 
in the nozzle or in the jet. In an actual case  [1, 2] the t ime within which P0 and T O can be taken as constant 
is small.  Therefore  it is important  to know how the steady flow is formed,  especial ly in the central  region 
of the s t ream usually used for performing studies. 

The flow of gas in the cent ra l  region of jets escaping from an axially symmet r i c  or flat nozzle with 
a strongly underexpanded s t ream,  as well as the flow in axially symmetr ic  or flat nozzles with a rec tangular  
contour (with the condition of neglecting frict ion at the nozzle walls), is close to radial  flow (with spher ica l  
or cyl indrical  symmet ry ,  respectively) [1-3]. The idealization of the original problem leads to the problem 
of the radial  (nonsteady) expansion of a gas f rom a suddenly turned on steady source.  

The problem was solved in [1] for the case of expansion Of a gas into a vacuum (in application to flow 
in nozzles).  The asymptot ic  form of flow as t ~  for the expansion of a gas into a flooded space was studied 
in [3] (in application to jet flows). In [1, 3] the analysis  was conducted in the f ramework  of the theory  of an 
ideal fluid. 

1. S t a t e m e n t  of  t h e  P r o b l e m  

Let a spherical or cylindrical surface of radius r I ~ 0 be defined in an infinite volume of a quiescent 

gas with known parameters of state (p~, T~o). It is required to determine the development of the flow of 
the gas in the region (rl, ~) with the course of time if at some moment t=tl the parameters of the gas at 

the surface r = r I suddenly acquire the fixed values Pl > P~, TI, ul -> 0 (M 1 _> I) which do not vary with time. 
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2.  G e n e r a l  P a t t e r n  of  F l o w  

Let us follow the p rocess  of development of the flow during the 
radia l  expansion of a gas (ideal fluid) into a flooded space f rom a sud- 
denly turned on steady source  with M 1 _> 1. In this case we will par t ly  
use the resul ts  of [1, 3]. The qualitative pat tern of flow is analogous 
for ~ = l a n d  v=2.  

The paths of motion of the sur faces  of a powerful explosionwhich 
determine the s t ruc ture  of the region of flow are  shown in Fig. 1. The 
contact surface separat ing the gas of the source  and the surrounding 
gas,  the shock wave in the surrounding gas, and the shock wave in the 
gas of the source  a re  denoted by the let ters i, e, and s, respect ively.  

At the initial t ime t = t 1 the velocity of the motion of the contact 
surface  is Vi= u 1. The gas of the source  acts on the surrounding gas 

like an expanding cyl indrical  or spher ica l  piston and, since according to the conditions of the problem u I >0 
is reached instantly, the compress ion  wave in the surrounding gas at the moment t I will be centered.  There -  
fore it must  be assumed that the compress ion  of the surrounding gas f rom the very  s ta r t  of the d ischarge  
will take place with the part icipation of a shock wave (e). 

With an increase  in r 1 the mass  of the surrounding gas displaced by the "piston" and set  into motion 
by it and the react ion of the surrounding p r e s s u r e  increase,  whereas the motive impulse supplied by the 
s o u r c e  per  unit t ime remains  constant. Therefore  the motion of the surface  i slows down with time, which 
in turn impedes the f ree  expansion of the gas escaping f rom the source  and leads to its accumulat ion in 
front of the surface  i and to compress ion .  In the initial period of d ischarge the p rocess  of compress ion  
will be isentropic,  since at t= t l  the velocity of the surface  i is equal to the velocity of the gas "accumulat-  
ing" at it and the difference in velocit ies increases  continuously with t ime. With time the wave of isen-  
tropic compress ion  changes into a shock wave, whose path of motion is shown by the sol idcurve s; the dashed 
section of the curve corresponds  to the stage of isentropic compress ion .  The flow of the gas in the region 
(r 1, rs) (under the solid curve) is not disturbed and takes place just as if the gas were escaping into a vac-  
uum. 

As t--*~o we have ri, re- -oo.  As this happens V i ~ 0  and the wave e degenerates  into a weak d is tur -  
bance. At the same t ime the p re s su re  Poo of the surrounding gas becomes determining in the region (rs, ri) 
as a resu l t  of which the shock wave s approaches a certain fixed position rs  = r ss  determined by the value 

~ rl(P01/Poo)t/v [3]. 

Henceforth we will use the following terminology (see Fig. 1): I, initial stage of expansion ( r e - r i < <  
ri ;  r i - - r s<<r i ;  r i<<rss) ;  II, i n t e rmedb te  stage of expansion; III, final stage of expansion ( t~oo; r i - -oo ; 

r e -  o~ ; rs  --" rss) .  

3.  P r i n c i p a l  L a w s  of  M o t i o n  of  t h e  S u r f a c e s  of  a P o w e r f u l  

E x p l o s i o n  in  t h e  I n i t i a l  S t a g e  of  E x p a n s i o n  of  a G a s  

i n t o  a F l o o d e d  S p a c e  

We shall confine ourselves to an examination, within the f ramework  of the theory of an ideal fluid, of 
the model problem of the expansion of a gas f rom a suddenly turned on steady source  with M12>>1. We shall  
take the conditions in the flooded space as typical for p rac t ice :  poo<< Pl; T~o <<T01. In the limiting case of 
expansion of a gas into a vacuum the problem has a simple solution: the gas (in par t icular ,  its leading 
front, i.e., the contact surface) moves with an a]most  constant velocity u-~Umax ~- u 1, while the distributions 
of p, p, and T in the region (r 1, r i) a re  close to those for steady expansion [1]. 

Let us determine the motion of the contact surface,  s tart ing f rom the law of conservat ion of momen-  
tum. Using considerat ions of the theory of a thin compresed layer  [4, 5], we will assume that in the initial 
stage of expansion the mass  of gas concentrated in the compressed  layer (r s, r e) is moving on the average 
with the velocity Vi = dr i /d t .  Since according to the conditions of the problem MI 2 >>1 and the thickness of 
the compressed  layer  is small ,  the effect of the p res su re  due to the widening of the s t r eam tubes on the mo- 
tion of the gas can beneglec ted .  In addition, one can also neglect the counte rpressure  p~, since for  smal l  
enough T o (or, to be more  precise ,  for c~ <<Vi 2) the re tardat ion of the escaping gas will take place mainly 
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When t '  >>t' I we have a p p r o x i m a t e l y  

th rough  the se t t ing  into mot ion of the d isplaced su r round ing  gas .  With 
a l lowance  fo r  this the equation of conse rva t i on  of m o m e n t u m  is wr i t t en  
in the f o r m  

( ' , ,  
�9 , dQ , " '~ "v (3.1) 

dr" ln'~,i q-  rn~,~) ~ = 2vn i p ' u ' r ' " d r '  = 2wp#q-rl  , 
r I 

where  the p r i m e  denotes  a d imens iona l  va r i ab le ,  while re ' s ,  i and m ' .  1,e 
denote  the m a s s  of gas in the reg ions  (r s, ri) and (ri ,  re)  ' r e spec t i ve ly .  

It is c l e a r  that  m ' i ,  e is a p p r o x i m a t e l y  equal  to the m a s s  of d i s -  
p laced  su r round ing  gas .  In p a r t i c u l a r ,  fo r  r ' i > > r '  1 

�9 2 ~ '  ' ' ~ + 1  (3.2) 

We can use  the equation of conse rva t i on  of m a s s  of the e scap ing  gas to d e t e r m i n e  the va lue  m '  �9 S,l" 

r s 

�9 ' ' "v ! 
rn~,i = 2 ~ p i u l r l  t --2v.~ S p ' r ' V d r  '. 

r l  

(3.3) 
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TABLE 1 

n{ 

n e 

n i 

m 

t~ e 

Experiment 

u=9/7  u=7/5  

0,68 0,7i 

0,7t 0,7t 

0,54 

0,66 

u=513 

0,65 
- -  

0,52 

0,63 

Theory 

~=9/7 ;  7/5; 5/3 

0,67 

0,5 

In the reg ion  (rl ,  rs)  the flow of the gas takes  p l ace  jus t  as  if the gas were  expanding into a vacuum.  
In p a r t i c u l a r ,  when M12>>l we have u'=~ u '  1 and 

P 'rw = Pir~ v, (3.4) 

which we can use  fo r  ca lcu la t ing  the in t eg ra l s  en te r ing  into (3.1) and (3.3). Replac ing ,  in addit ion,  the upper  
l imits  of in tegra t ion  in t he se  in t eg ra l s  with the c lo se  value  ri ,  a f t e r  the subs t i tu t ion  of (3.2) and (3.3) into 
(3.1) and twofold in tegra t ion  we obtain the law of mot ion of the contac t  s u r f a c e :  

2 ( r i - - t ) ~ = b r ~ + 2 @ C i t @ C 2 ,  b ~  ( v §  p~' (3.5) 

where  r i = r ' i / r ' l ;  t = t ' u ' i / r ' l ;  Poo = P ' / P ' I .  When r i ,  t=O (1) the e s t i m a t e  C1, C2_> 0 ( p J  fol lows f r o m  (3.5) 
and the f i r s t - o r d e r  d i f f e ren t i a l  equat ion fo r  the cons tan t s  of in tegra t ion  which c o r r e s p o n d s  to  it. T h e r e -  
fore ,  for  r i ,  t>>l we f inal ly have 

"~'+2 

t = r~ -~ l/ 'br T~ (3.6) 

F o r  r i<<b-1/~ Eq. (3.6) gives  r i = t ,  which c o r r e s p o n d s  to the solut ion for  the expansion of a gas into a v a c -  
uum [11. 

The effect  of the flooded space  begins to  be fel t  when r i =  0(b- I /v) .  Let  us examine  the solut ion ob- 
tained when r i > > b - l / v ,  where  

r~=b-i /v  ~- 2 t2/v+2. 

Return ing  to d ime ns i ona l  v a r i a b l e s  in (3.7) 
2 

= -~ ~ J t , 

(3.7) 

(3.8) 

we see  that the mot ion  of the con tac t  s u r f a c e  for  each  v= 1, 2 is d e t e r m i n e d  by only two va lues :  p "  and 
the impu l se  of the s o u r c e  pe r  unit t ime  I '  1 = 2~ up ~ u '12r ' l  v. When the p r e s s u r e  P~o is neglec ted  the s ta te  of 
the gas  in the su r round ing  space  is de t e rmined  by the s ingle  nonze ro  d imens iona l  value  p ' .  There  fore,  
the v e r y  p r o c e s s  of flow of the gas in the r eg ion  (r i, oo ) is de t e rmined  by only two d imens iona l  values  : I '  i 
and p ' .  Since the i r  d imens iona l i t i e s  a r e  independent ,  in the reg ion  (ri, ~) t he re  is a s e l f - s i m i l a r  solut ion 
of the p r o b l e m  which depends on v, ~ and the s ingle  va r i ab l e  [6] 

t 2 

In this  c a s e  c e r t a i n  fixed va lues  of X c o r r e s p o n d  to  the s u r f a c e s  of a power fu l  eNolosion. 

This  solut ion c o m e s  down to  the wel l -known solut ion of the p r o b l e m  of the d i s p l a c e m e n t  of a gas  by 
an expanding cy l i nd r i c a l  or  s p h e r i c a l  p i s ton  moving in a c c o r d a n c e  with the p o w e r  law r ' i =  C ' t ' n  +1 of (3.8). 
In p a r t i c u l a r ,  we have 

r e ( t ) = ~ r ~ ( t ) ;  ~ = - a ( n , •  (3.10) 

w h e r e  n = -  v/ (~+2) .  Fo r  ~ = 1 . 4  the n u m e r i c a l  va lues  of a =a (n, ~t, v) a r e  given in [7]. 

Equat ion  (3.10) can a l so  be used to e s t i m a t e  the value  of re(t) when r i -  0 (b- I /v ) ,  s ince  the value  of a 
depends  weakly  on the  exponent  n [which eannot  be said about  the d i s t r ibu t ion  i t se l f  of the  p a r a m e t e r s  in the 
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r eg ion  (ri ,  re)] .  F o r  example ,  fo r  ~ = 1.4 with the m a x i m u m  v a r i a t i o n  in n for  (3.6) [ f rom 0 t o - v / ( v  +2)] 
the value of a f o r  v = l  and v =2 v a r i e s  within l imi t s  of 5% about  s o m e  a a v = l . 1 3  [7]. 

Let  us find the a pp rox i m a t e  law of mot ion  of the shock wave s. A s s u m i n g  that  p '-~ O ' s , . ( z + l ) / ( z - 1 )  
in the  reg ion  (r s, r i ) ,  f r o m  (3.3) with the help of (3.4) we obtain 

v + i  r v + l  

�9 ~--t r~' -" (v -- i) (t - -  r~), 

where  t = t ' u ' l / r ' l ;  r c ~ = r ' ~ / r '  1. Or s ince  r i - r  s <<r i 

z--it)" (3 . i i )  

F o r  the expans ion  of a gas  into a vacuum,  when r i = t ,  (3.11) gives  the c o r r e c t  r e s u l t :  rs(t) =r i ( t ) .  

Note that  Eqs .  (3.6), (3.10), and (3.11), which de t e rmine  the laws of mot ion of the s u r f a c e s  i, e, and s 
of a power fu l  explos ion  in the ini t ia l  s tage  of expansion,  al low one to change to  the new v a r i a b l e s  

I , \ , l , ' v  , , . [' , ~,,tlV , 

t,. Pl ] rl ' ' ,  

in which the motion of these  s u r f a c e s  wil l  be given by single equat ions  fo r  d i f fe ren t  P ~ / P ' l .  

The r e s u l t s  of the ana lys i s  conducted above al low one to explain ce r t a i n  r e g u l a r i t i e s  of the mot ion  of 
the s u r f a c e s  of a power fu l  explos ion  dur ing  the d i s c h a r g e  of shock -hea t ed  gas f r o m  a f lat  s lot  (analog:  v = 1) 
and f r o m  a round opening (v = 2) [2]. 

We should note the fol lowing in advance .  The  condit ion r i>>b-1/~ is equivalent  to the condit ion that  
the m a s s  m ' i , e ( ~ P ,  r i  v (t)) of d i sp laced  su r round ing  gas is much  g r e a t e r  than the m a s s  ,,, t,e~ P i ~" 1" 1 - s 
of gas  coming  th rough  the s o u r c e .  This  gives  a phys ica l  explanat ion for  the fac t  that  the law of mot ion  r ' i =  
r ' i ( t )  of the contac t  s u r f a c e  is d e t e r m i n e d  he re  only by the va lues  v, I '  l, and p ' .  

It is r e a s o n a b l e  to a s s u m e  that  in the' c a se  of the expansion of a gas  f r o m  a s o u r c e  with 1VIi=l, a s  oc -  
c u r s  in the e x p e r i m e n t s  of [2], in the sec t ion  of the ini t ial  s tage  of expansion whe re  m ' i , e > > m ' t ,  i and r '  i >> 
r ' l  the mot ion of the contac t  su r f a c e  will  be de t e rmined  f i r s t  of a l l  by the two-d imens iona l  va lues :  I't= 
2vTr(PiUi 2 + p ' l ) r l  'u and p ' .  Then  the a r g u m e n t s  which led to (3.9)-(3.10) above a r e  valid here .  

In [2] the laws of mot ion of the f ront  of escap ing  gas (~= i) and of the shock  wave in the su r rou n d in g  
gas (~= e) were  de t e rmined  e xpe r i m e n t a l l y  and r e p r e s e n t e d  in the f o r m  of the funct ions  x~ = c ~ t n ~ ( x  ' ~- r ' ) .  
An ana lys i s  of the e xpe r i m e n t a l  condit ions shows that  the condit ion m ' i , e > > m ' t ,  i is sa t i s f ied  in a l m o s t  the 
en t i r e  in i tml  s tage  of expansion.  A c o m p a r i s o n  of the va lues  of the exponent  n ~  with the t heo re t i c a l  va lues  
is given in Table  1. 

N u m e r i c a l  va lues  of a f r o m  (3.10) a r e  known for  u = 1.4 [7]. T h e r e f o r e  the value  of Xe/X i can be c o m -  
pared  with the t h e o r e t i c a l  value.  F o r  the d i s c h a r g e  of N2(~t= 1.4) f r o m  a slot,  where  n e = n i  ~ 0.67, we have 
Xe/Xi = 1.19 and r e / r i  = 1.16. 

4 .  N u m e r i c a l  M e t h o d  o f  S o l v i n g  t h e  P r o b l e m  

f o r  a V i s c o u s  T h e r m a l l y  C o n d u c t i n g  G a s  

The uns teady  r ad ia l  flow of a v i scous ,  t h e r m a l l y  conduct ing,  c o m p r e s s i b l e ,  ideal  gas  is de sc r ibed  by 
the fol lowing s y s t e m  of equat ions  [8]: 

or. or ~.-,(op op) , , , , , ,  a(.  or) 
p ~/- ~- pu . . . .  rV,u ' 

a9 1 a ( r v p u ) =  O; b-[ ,.; Y,. 

p =pT,  

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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where all the values are  normalized to the corresponding values at r '  = r '  1 ; t = t ' u ' l / r '  1 ; Re I = pTlu~lr'l/p' 1 ; 
M l = u ' l / c ' l ;  the Prandtl  number a and the rat io of heat capacities u a re  assumed to be constant. 

Stating f rom the general  s tatement of the problem and keeping in mind the nature of the sys tem of 
equations (4.1)-(4.4), we can write the boundary conditions in the following fo rm:  

when t = l  u = l ,  T = I ,  and p =1 for r = l ;  u=0,  T = T ~ ,  and p=p~o for  1< r-<~; 
when t > l  u = I ,  T = I ,  and p = l  for r = l ;  u=0,  T = T ~  for  r - -~ .  

To find the values of u, T, and p in the reg ion( l ,  co) when t > l  we propose to use Eqs. (4.1)-(4.3), r e -  
spectively. By eliminating the p ressu re  p f rom (4.1)-(4.2) with the help of (4.4) and noting the derivat ive 
a p / a t  which appears in (4.2) in this case with the help of the equation of continuity (4.3), we can write the 
system of equations in the following linear fo rm:  

Ou 02u Ou 
0-7 + Alo%-~+ A2Uv + A3u = A~; (4.5) 

OT . B O~T OT -4- B~T = B.a; 
~ - +  lo-~+B~b-~ , (4.6) 

op 0p 
0-7 + C~'Uv + Cs9 = C4, (4.7) 

where y = y(r) is a t ransformat ion  which changes [l, 0o] ~ r into [0, 1] ~ y: Ak, Bk, and C k a re  complexes r e -  
maining after  the isolation of the linear section�9 If one considers  that the t e rms  containing the products 
u(0u/~ y) and TO T/8y) were included in the groups A2(b u/0 y) and B2(0T/~ y), respect ively,  the notation (4.5)- 
(4�9 uniquely determines  the form of A k, Bk, and Ck. 

As the experiment of an ear l ie r  repor t  [9] shows, to solve the problem with an acceptable accuracy  
and a reasonable  volume of calculations one must have a f ini te-difference sys tem with an accuracy  no worse 
than 0 ( h  2) with respec t  to space y. In the approximation of Eqs. (3.7} and (3.8) by finite differences one can 
use the implicit  difference sys tem of [9], which has an appi.'oximation accuracy  0(~ + h 2) and for the c o r r e -  
sponding linear equations is stable for  any finite ~/h 2, where ~ and h a re  the s teps in t ime and in space y, 
respectively.  In par t icular ,  for (4.5) 

u~ + i  - -  uJ ~+ l  _ ,2u{+l  + ui+l u i + i  . i + i  

/~- ~ 2h + ~ ~ = A~-i- 0 ( z +  h~), (4.8) 

where i is the number of the parti t ion with respec t  to y(0_< i_< N) ; j is the number of the t ime layer (j _> 0). 
The value of AJki are  calculated as follows: the values entering into A k a re  calculated algebraical ly,  a s -  
suming that their  values a re  equal at the node (tJ +~, Yi), while the derivatives with r e spec t  to y a re  calcu-  
lated at the point i of the j - th  layer  using the central  differences 0(h2). 

Equation (4.6) is approximated in a s imilar  way. 

With an equation of the hyperbolic type of (4.7) the mat te r  becomes somewhat more complicated (we 
assume that the C k are  known). The implicit  difference sys tem with the natural,  in the given case r ight -  
sided, approximation of the spatial  derivative leads to a spatial accuracy  of only 0(h) [10]. Therefore ,  we 
proceed as follows. F rom the Taylor  ser ies  expansion of p with respect  to y in the vicinity of the point 
(tJ + 1, Yi) we have 

v i + l  - -  

kwh h 

Replacing &p/Oy2)] +1 with the corresponding value in 

v i + i  i /op~J+~ #+~ _ pJ+i 
k~h  h 

(o ~p~+l h . 0 (h~). 
~v~]~ E + 

the j - th  layer,  we obtain 

/0,p V h + k ~ p j ~ + O ( T  h~). 

Thus, the difference system for (4.7) can be written in the form 

p j + l _  j j+i_oJ+i 
h 3iei +C{i = �9 + 0 ( z + h 2 ) ,  (4 �9 . . . .  ~ , ~  ko~% 

- 2 - J + , l  1)/h 2, while the C~i are  calculated analogously to the A~i and B~i. It is where (O2p/Oy~) i=(p{+l  v i  ~ i -  

not hard to ver i fy  [10] that when Ck=cons t  (i.e., for a l inear equation) the sytem (4.9) is stable for any finite 
r /h .  
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The v a l u e s  of ui  J+l  fo r  j ->0  w e r e  d e t e r m i n e d  by the  t r i a l  r un  method  [10] f r o m  the s y s t e m  of e q u a -  
�9 " + l  

t i ons  u0 ] + 1 =  1 and  (4.8) fo r  1_< i<_ N - 1  and ui ] +1=  0. The  T i  ] w e r e  c a l c u l a t e d  a n a l o g o u s l y .  The  v a l u e s  

�9 . 1 = 1  . N i ofPi ] + l  w e r e  d e t e r m i n e d  f r o m  (4.9) with the  i n i t i a l  condi t ion  p0 ] + The  v a l u e  of p needed  fo r  th i s  
when j _> 1 was  d e t e r m i n e d  by e x t r a p o l a t i o n  f r o m  the  p J i ( N -  3 -  i _  N -  1). In the  c a l c u l a t i o n s  conduc ted  the  

p i n  co inc ided  wi th  p~= poo with  an  a c c u r a c y  of f ive  s i g n i f i c a n t  f i g u r e s .  

The  funct ion  y =  (2 /Tr )a rc tan  [ ( r - 1 ) / / ] ,  w h e r e  l = 0 ( r s s ) ,  we used  fo r  y = y ( r )  in the  c a l c u l a t i o n s .  The  
s t ep  h in s p a c e  was  t a k e n  a s  u n i f o r m  whi le  the  v a l u e  of the  s t ep  v in t i m e ,  in connec t ion  with the  f ac t  tha t  
the  t i m e  r a t e  of d e v e l o p m e n t  of the  p r o c e s s  v a r i e s  qu i te  c o n s i d e r a b l y  in the  c o u r s e  of t i m e ,  was  t a k e n  f r o m  
the equa t ion  

-~J+iAJ =~lAO ' A J = max /(o In u~J [~'ln T~J (o lrL p'lJ/ 
i<~.-:.x'-~[~, at h' \ - -~A'  \ ~ t - h /  

The  p r o c e s s  was  c o n s i d e r e d  a s  e s t a b l i s h e d  when A j-< e .  The  v a l u e s  of ~.0, h, and  ~ w e r e  s e I e c t e d  
e x p e r i m e n t a l l y  in such  a way  tha t  upon t h e i r  f ivefo ld  v a r i a t i o n  the  d i s t r i b u t i o n  of the  p a r a m e t e r s  a t  s i m i -  
l a r  t i m e s  did  not  d i f f e r  by m o r e  than  2-3%�9 

5 .  R e s u l t s  o f  a N u m e r i c a l  S o l u t i o n  o f  t h e  P r o b l e m  

f o r  a V i s c o u s  T h e r m a l l y  C o n d u c t i n g  G a s  

The  d i s t r i b u t i o n s  of the  s t r e a m  p a r a m e t e r s  fo r  the e x p a n s i o n  of a gas  f r o m  a s u d d e n l y  t u r n e d  on c y -  
l i n d r i c a l  s o u r c e  (~= 1) with M 1 = M.--- 1 into a m e d i u m  wi th  p~= 0.12 and Too = To.  =1.2 a r e  g iven  in F ig .  2 
a s  an e x a m p l e  i l l u s t r a t i n g  the  d e v e l o p m e n t  of the  f low of a v i s c o u s  t h e r m a l l y  conduc t ing  gas .  H e r e u  = 
7 /5 ,  a = 3 / 4 ,  and # = T .  

The  d i s t r i b u t i o n s  of the  p a r a m e t e r s  c o r r e s p o n d i n g  to the  t i m e  t 0= 1 a r e  deno ted  by the  n u m b e r  0. 
T h e s e  d i s t r i b u t i o n s ,  which  r e p r e s e n t  s m o o t h e d  d i s c o n t i n u i t i e s ,  w e r e  g iven  as  the  i n i t i a l  d i s t r i b u t i o n s  i n t h e  
c a l c u l a t i o n s .  The  t i m e s  tk = 1 + 0.32 �9 2 k a r e  d e n o t e d  by the n u m b e r s  1-13 .  The  s o l i d  l ines  c o r r e s p o n d  to 
R e .  =25 and the d a s h e d  l ines  to  R e .  = 2 0 0 .  The  a r r o w s  with the  i n d i c e s  s,  i, and e show the cond i t iona l ,  
wi th in  the  l i m i t s  of 5-7%, p o s i t i o n s  of the  c o r r e s p o n d i n g  s u r f a c e s  of the  p o w e r f u l  e x p l o s i o n  fo r  the  t i m e  
tG = 11.28 ( h e r e  and a f t e r w a r d  the t e r m  " s u r f a c e "  w i l l  be used  in the  c a s e  when d i s c u s s i n g  i n t e g r a l  c h a r a c -  
t e r i s t i c s  of the  shock  waves  o r  the  con t ac t  zone :  pos i t i on ,  d r o p  in p a r a m e t e r s ,  e t c . ) .  

The o v e r a l l  p a t t e r n  of the  f low c o r r e s p o n d s  to  that  p r e s e n t e d  in P a r t  2. The  s h o c k  wave  e is  f o r m e d  
a l m o s t  i m m e d i a t e l y  a f t e r  the  beg inn ing  of the  d i s c h a r g e  of gas .  F o r  e x a m p l e ,  a t  the  t i m e  t e the  d i f f e r e n c e  
in the  va lue  of T/p )(-~ " b e f o r e "  and " a f t e r "  the  wave  is  a l r e a d y  30% (for R e .  =200) .  The  p r o c e s s  of c o m -  
p r e s s i o n  of the  gas  in f ron t  of the  i nne r  s u r f a c e  of the "p i s ton"  i con t inues  to  be  i s e n t r o p i c  fo r  s o m e  t i m e .  
F o r  e x a m p l e ,  fo r  the  s a m e  R e ,  a t  the  t i m e  t 4 the  b e h a v i o r  of p and T in the  r e g i o n  f r o m  r = 1 to  the  po in t  
wi th  the  m a x i m u m  va lue  of p s t i l l  obeys  the  l aw T =  pU-I  wi th  an  a c c u r a c y  of 5%. A t  the  t i m e  t G the  shock  
wave  s is  a l r e a d y  f o r m e d .  

The  flow of gas  in the  r e g i o n  (1, r s )  t a k e s  p l a c e  j u s t  a s  f o r  expans ion  into a vacuum�9  S ince  P~o and 
Poo a r e  r a t h e r  l a r g e  in the  g iven  c a s e ,  h o w e v e r ,  the  c on t a c t  s u r f a c e  moves  s l o w e r  than  the  b o u n d a r y  of 
s t e a d y  flow d u r i n g  the  e x p a n s i o n  of a gas  into a v a c u u m  [1]. T h e r e f o r e  the  f low of gas  is  s t e a d y  in the  r e -  
g ion (1, r s ) .  It has  the  p r o p e r t i e s  i n h e r e n t  to the  s t e a d y  r a d i a l  f low du r ing  the e x p a n s i o n  of a gas  into a v a c -  
uum [9]. We note  tha t  the  e f fec t  of Re.~ u ,  ~ ,  and the d e p e n d e n c e  p =p (T) a r e  m a i n f e s t e d  a n a l o g o u s l y  fo r  
v = l  and v = 2 .  

The  b e h a v i o r  of the  s t r e a m  p a r a m e t e r s  in the  r e g i o n  ( r i ,  re)  in the  i n i t i a l  s t a g e  of e x p a n s i o n  [up to  
t = 0(t~)] c o r r e s p o n d  q u a l i t a t i v e l y  to  the  b e h a v i o r  of the  p a r a m e t e r s  in the  p r o b l e m  on the p i s t o n  [7]. 

A s  t ~  we have  r e ,  r i ~ o  and r s ~ r s s .  In t h i s  c a s e  T i + - - T o o  a s  a r e s u l t  of the  d e g e n e r a t i o n  of 
the  shock  wave  e into a weak  d i s t u r b a n c e .  At  the  s a m e  t i m e  T i_ a p p r o a c h e s  the  s t a g n a t i o n  t e m p e r a t u r e  
To.  of the  e s c a p i n g  gas ,  in th i s  c a s e  equa l  to T~ o. Conse que n t l y ,  Ti+ ~ Ti_.  S ince  a t  the  con tac t  s u r f a c e  
u i +  = u  i_ and p i + = P i  _ in add i t ion ,  the  d rop  in the  p a r a m e t e r s  a t  i t  d i s a p p e a r s  a s  t - - o o  and the f low changes  
to  a s t a t i o n a r y  mode�9 

It should  be  noted tha t  a d e c r e a s e  in the  o v e r a l l  c o m p a c t n e s s  of the  s t r e a m  (a d e c r e a s e  in R e , ) ,  which 
l e s d s  to  a c o n s i d e r a b l e  change  in the  p a r a m e t e r s  in the  e n t i r e  r e g i o n  of flow, has  a r a t h e r  weak  e f fec t  on 
the  i n s t a n t a n e o u s  p o s i t i o n  of the  shock  waves  and the  c on t a c t  s u r f a c e .  
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The qualitative pat tern of flow for the case of the spherical  (u=2) expansion of a viscous thermal ly  
conducting gas into a flooded space with Too = To. is fully analogous to that described above. The important  
difference between the cases of u = 1 and ~ =2 appears  when Too ~ To, and involves mainly the final stage of 
expansion. This question requi res  a special  examination and will not be discussed in the present  ar t ic le .  

A comparison of the dependences r i  = ri(t) for the initial stage of expansion of a gas for v = 1 found 
through the approximate analysis of Par t  3 [Eq. (3.6), curve 1] and f rom the resul ts  of a numer ica l  calcula-  
tion (curve 2) is given in Fig. 3. Here ~ = 7 / 5 ;  Ml=5;  p" /p'1=0.123; T - - / T ' I = 0 . 1 4 5 .  To obtain better 
accuracy  in the approximate solution the value r ' e = a r ' i ,  which corresponds  to m'i ,  e in physical  meaning, 
was inserted into (3.2) in place of r '  i in accordance  with (3.10). This led to a new form of the value in (3.6): 

2aV+l 
b = (~+ t)(, +2) p~' a---- IA3. The additional conditions for the numer ica l  calculations a re :  ~ =3/4; p =T; 

Re 1 = 400. The dependence r e=  t which corresponds  to expansion into a vacuum is shown by a dashed line 
for  c learness .  

The approximate dependences re(t) and rs(t) determined by Eqs. (3.6), (3.10) with a=1 .13 ,  and (3.11) 
agree  with an accuracy  of 5-10% with those result ing fron a numerica l  calculation. 

The author thanks A. K. Rebrov for useful discussions.  

N O T A T I O N  

r,  radius;  t, t ime;  T, tempera ture ;  p, p re s su re ;  p, density; u, velocity of gas;  u ,  rat io of heat capac-  
ities; M, Mach number ;  x, distance along axis of jet f rom nozzle cut; Va, t ranslat ional  velocity of surface 
~; mc~,/3, mass  of gas included in the region ( re ,  r~ ) ;  c, velocity of sound; ~, dynamic viscosi ty.  

INDICES 

u = 1, 2, cyl indr ical  and spher ica l  symmet ry ;  ', dimensional value; - (+), left (right) side of sur face  
of powerful explosion; ~, conditions in flooded space;  0, conditions of adiabatic stagnation; *, sonic s u r -  
face;  1, surface  of source.  
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